Michel Arrigoni, Jérémie Tartière Julien Le Clanche, Baptiste Reynier

UNIVERSITY OF OXFORD

Thibaut de Rességuier,
Pierre Pradel,

Pascal Forquin,
Daniel Eakins, David Chapman,
Bratislav Lukic, Alexander Rack

Why should we be interested by Autoclaved Aerated Concrete (AAC)?

$\Rightarrow 50 \mathrm{~mm}$ thick Siporex stops projectiles at $120 \mathrm{~m} / \mathrm{s}$ and slowens down by $50 \mathrm{~m} / \mathrm{s}$ at higher velocity
\Rightarrow Good ability for mitigating the effects of ballistic \& fragment impact.

Autoclaved Aerated Concrete (AAC)

- Insulating material
- Porous material
- Resistant to fire
- Refractory material
- Low impact on environment
- Low cost

Material description

- Autoclaved concrete manufactured by Xella ${ }^{\circledR}$:

1. Siporex
2. Multipor

- Made of same components but different ratios

Quantity	Multipor	Siporex
Density $\boldsymbol{\rho}$	$\mathbf{1 1 5} \mathbf{~ k g} / \mathbf{m}^{\mathbf{3}}$	$\mathbf{5 5 0} \mathbf{~ k g} / \mathbf{m}^{\mathbf{3}}$
Young modulus E	$0,6 \mathrm{GPa}$	$2,74 \mathrm{GPa}$
Compressive strength RM	$0,35 \mathrm{MPa}$	$4,5 \mathrm{MPa}$

- Variation on density
- Different mechanical properties

multipor

Mechanical properties under shock loading?

Summary

- Plate impact Setting at ESRF
- Data processing with Python
- Analytical analysis

Plate-impact experiment setup

- Plate-impact experiment
- 3 velocities for each AAC
- X-Ray recording

Scintillator

and cameras

Plate impact at ESRF

- X-Ray bursts every 176ns (pulse duration 100120ps)
- Convert X-Rays to visible light for cameras
- Greyscale images (16 bits)
- Cameras frequency $\approx 2 \mathrm{MHz}$

X-Rays visualisation at ESRF, picture from [Farbaniec, 2021]

Sample images treatment

N greyscale profiles vs pixel position

Scintillator images treatment

N greyscale profiles vs pixel position

Image compilation

Image 1

Image n

Image N

Shot image compilation

Space-time diagram creation

Time and space scales

LROI

X-t (Space-time) diagram

Curve tracking and fitting

Shock polar analysis

- 1D plane shock approach
- Known Aluminium properties, unknown AAC properties
- 3 velocities for each AAC : 3 points on AAC shock polar

What to fit ?

Porous approach ?
More points required

P-u diagram with computed data from plateimpact experiment for Multipor and Siporex

X-t (Space-time) diagram

AAC compaction description by simplified approach

- AAC sample $\approx \mathrm{N}$ [mass AAC ;spring;mass] system with

$$
\mathrm{N}=\frac{\text { median cell size }}{\text { sample thickness }}
$$

- So called «AAC spring »:

N cells of size
$>$ If elastic stage : $F=-k \cdot x$
$>$ If crushing stage : $F=-R M$. A
> If densification stage : rigid body
With : A the sample section, $k=A \cdot \frac{E}{L}$ and L the cell length

Porous P- α model for porous materials [Aminou, CFM 2022]

AAC compaction, simplified approach

- Iterative approach to track compaction front :
> 1 mass-AAC spring-mass system at a time
$>$ Mass $1=$ projectile+buffer+densified AAC

$$
\begin{aligned}
& L_{\text {densified }}=\frac{m_{\text {cell }}}{\rho_{\text {densified }} \cdot L^{2}} \\
& m_{\text {cell }}=m_{\text {sample }} \cdot \frac{L^{3}}{A \cdot L_{\text {sample }}}
\end{aligned}
$$

$>$ Mass 2 = remaining AAC

Model results for Multipor

- Multipor samples impacted at 250 $\mathrm{m} / \mathrm{s}, 335 \mathrm{~m} / \mathrm{s}$ and $400 \mathrm{~m} / \mathrm{s}$
- Correct agreement between model and experiment
- Same result for all impact velocity

Model results for Multipor

- Multipor samples impacted at 250 $\mathrm{m} / \mathrm{s}, 335 \mathrm{~m} / \mathrm{s}$ and $400 \mathrm{~m} / \mathrm{s}$
- Correct agreement between model and experiment
- Same result for all impact velocity

Model results for Siporex

- Multipor samples impacted at 250 $\mathrm{m} / \mathrm{s}, 335 \mathrm{~m} / \mathrm{s}$ and $400 \mathrm{~m} / \mathrm{s}$
- Correct agreement between model and experiment
- Same result for all impact velocity

Model results for Siporex

- Multipor samples impacted at 250 $\mathrm{m} / \mathrm{s}, 335 \mathrm{~m} / \mathrm{s}$ and $400 \mathrm{~m} / \mathrm{s}$
- Correct agreement between model and experiment
- Same result for all impact velocity

Result for $335 \mathrm{~m} / \mathrm{s}$ shot on Siporex superimposed with mass-AAC spring-mass model

Results for Multipor impacted at $250 \mathrm{~m} / \mathrm{s}, 335 \mathrm{~m} / \mathrm{s}, 400 \mathrm{~m} / \mathrm{s}$

- Multipor samples impacted at $250 \mathrm{~m} / \mathrm{s}$, $335 \mathrm{~m} / \mathrm{s}$ and $400 \mathrm{~m} / \mathrm{s}$
- Correct agreement between model and experiment

Result for $250 \mathrm{~m} / \mathrm{s}$ shot on Multipor superimposed with mass-AAC spring-mass model

Results for Siporex impacted at $250 \mathrm{~m} / \mathrm{s}, 335 \mathrm{~m} / \mathrm{s}, 400 \mathrm{~m} / \mathrm{s}$

- Siporex samples impacted at $250 \mathrm{~m} / \mathrm{s}$, $335 \mathrm{~m} / \mathrm{s}$ and $400 \mathrm{~m} / \mathrm{s}$
- Correct agreement between model and experiment

Result for $335 \mathrm{~m} / \mathrm{s}$ shot on Siporex superimposed

Result for $250 \mathrm{~m} / \mathrm{s}$ shot on Multipor superimposed

Conclusions

- 3 points of the Hugoniot could be plotted for 2 AAC
- Compaction observed at fast xray for two AAC (Multipor and Siporex)
- Tool development by x-t analysis to follow the compaction process
- Proposition of an analytical model for compaction description
- Correlation between analytical results and experimental ones
- More experiments required at slower and higher velocities
- Numerical simulation could correlate ?

